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Marking Student Programs

C Programming Course in Nagoya

• ±70 students every year (of whom 60 active)

• 3 programming exercises every week

• =⇒ 180+ exercises to grade every week for a full semester

• student programs can be horrible
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Example Assignment

Exercise: write a function that calculates Σn
k=1k.
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Example Homework Solutions

int sum(int x) {
int i = 0, z = 0;

for (i = 0; i <= x; i++)

z += i;

return z;

}
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Example Homework Solutions

int sum( int n ){
int cnt;

int data;

if(n < 0){
return 0;

}
for(cnt = 1;cnt <= n;cnt++){
data = data + cnt;

}
return data;

}
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Example Homework Solutions

int sum(int n)

{
if ( n<=0 ) {
return 0;

} else {
return (n*(n+1)/2);

}
}
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Example Homework Solutions

int sum(int x) {
int i, j, z;

z = 0;

for (i = 0; i <= x; i++)

for (j = 0; j < i; j++)

z++;

return z;

}
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Solving the Problem

Solutions

• hire some teaching assistants!

• automate the marking
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Solving the Problem

Automated Program Testing

• run automatic tests

• prove that programs are correct!
• we are experts in term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!
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What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

• first-order (usually)

• no fixed evaluation strategy

• no fixed order of rules to apply (Haskell: top to bottom)

• untyped

• no pre-defined data structures (integers, arrays, . . .)
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Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: We want to do program analysis. Should we really throw
away domain knowledge about built-in data structures?!
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What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning
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Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)

→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3
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Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

• Fterms = {sum} ∪ {n | n ∈ Z}
• Ftheory =

{+,−,≥, >,∧, true, false} ∪ {n | n ∈ Z}
• Values: true, false, 0, 1, 2, 3, . . . ,−1,−2, . . .

• Interpretation: addition, minus, etc.
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Examples

Bitvector Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

• Fterms = {sum} ∪ {n | n ∈ Z ∧ 0 ≤ n < 256}
• Ftheory =

{+,−,≥, >,∧, true, false}∪ {n | n ∈ Z∧ 0 ≤ n < 256}
• Values: true, false, 0, 1, 2, 3, . . . , 255

• Interpretation: addition, minus, etc. modulo 256
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Examples

Array Summation

sum(a, x) → 0 [x < 0]
sum(a, x) → select(a, x) + sum(a, x− 1) [x ≥ 0]

• Fterms = {sum} ∪ {n : int | n ∈ Z} ∪ {a : iarr | n ∈ Z∗}
• Ftheory =

{+,−,≥, >,∧, select, true, false} ∪ {n | n ∈ Z} ∪
{a : iarr | a ∈ Z∗}

• Values:
true, false, 0, 1,−1, 2,−2, . . . , (), (0), (1), . . . , (0, 0), . . .

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 19 / 53
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Summary

Logically Constrained Term Rewriting Systems
[Kop and Nishida, 2013]

• work much like normal term rewrite systems:
• terms are expressions built from function symbols
• rules are used to rewrite terms

• can handle integers, arrays, bitvectors, ...

• no predefined behaviour!

• are flexible enough to faithfully model (many) real-world
programs
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Simple Integer Functions

Factorial

int fact(int x) {
int z = 1;

for (int i = 1; i <= x; i++)

z *= i;

return z;

}

fact(x) → u1(x)
u1(x) → u2(x, 1, 1)

u2(x, z, i) → u3(x, z, i) [i ≤ x]
u2(x, z, i) → u4(x, z, i) [¬(i ≤ x)]
u3(x, z, i) → u2(x, z ∗ i, i+ 1)
u4(x, z, i) → z
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u1(x) → u2(x, 1, 1)

u2(x, z, i) → u3(x, z, i) [i ≤ x]
u2(x, z, i) → u4(x, z, i) [¬(i ≤ x)]
u3(x, z, i) → u2(x, z ∗ i, i+ 1)
u4(x, z, i) → z
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Error Checking

Division by Zero

boolean divides(int x, int y) {
return x % y == 0;

}

divides(x, y) → return(x mod y = 0)

[y 6= 0]
divides(x, y) → error [y = 0]

(defining x mod 0 = 0)
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Error Checking

Integer Overflow

int fact(int x) {
int z = 1;

for (int i = 1; i <= x; i++)

z *= i;

return z;

}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1)[i ≤ x]

∧ z ∗ i < 256 ∧ i+ 1 < 256

u2(x, z, i) → return(z) [¬(i ≤ x)]
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Function Calls

Recursion

int fact(int x) {
if (x > 0) return x * fact(x-1);

else return 1;

}

fact(x) → x ∗ fact(x− 1) [x > 0]
fact(x) → 1 [¬(x > 0)]

helper(x, return(y)) → return(x ∗ y)
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Function Calls

Recursion with Errors

int fact(int x) {
if (x > 0) return x * fact(x-1);

else return 1;

}

fact(x) → helper(x, fact(x− 1)) [x > 0]
fact(x) → return(1) [¬(x > 0)]

helper(x, return(y)) → x ∗ y [x ∗ y < 256]
helper(x, return(y)) → error [x ∗ y ≥ 256]

helper(x, error) → error
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Side Effects

Global Variables
int best;

int up(int x) { void main() {
if (x > best) { while(1) {
best = x; int k = input();

return 1; up(k);

} if (!k) break;

return 0; }
} }

up(b, x) → returnup(x, 1) [x > b]
up(b, x) → returnup(b, 0) [¬(x > b)]
main(b) → u1(b, inp)
u1(b, k) → u2(k, up(b, k))

u2(k, returnup(b′, i)) → returnmain(b′) [¬(k 6= 0)]
u2(k, returnup(b′, i)) → u1(b

′, inp) [k 6= 0]
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Side Effects

Statically Allocated Arrays
void strcpy(char goal[], char original[]) {

int i = 0;

for (; original[i]; i++) goal[i] = original[i];

goal[i] = 0;

}

strcpy(x, y) → v(x, y, 0)
v(x, y, i) → w(x, y, i) [select(y, i) = 0]
v(x, y, i) → v(store(x, i, select(y, i)), y, i+ 1)

select(y, i) 6= 0]
w(x, y, i) → return(store(x, i, 0))

v(x, y, i) → error [i < 0 ∨ i ≥ size(y) ∨
(select(y, i) 6= 0 ∧ i ≥ size(x))]

w(x, y, i) → error [i < 0 ∨ i ≥ size(x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Side Effects

Statically Allocated Arrays
void strcpy(char goal[], char original[]) {

int i = 0;

for (; original[i]; i++) goal[i] = original[i];

goal[i] = 0;

}

strcpy(x, y) → v(x, y, 0)
v(x, y, i) → w(x, y, i) [select(y, i) = 0]
v(x, y, i) → v(store(x, i, select(y, i)), y, i+ 1)

[select(y, i) 6= 0]
w(x, y, i) → return(store(x, i, 0))

v(x, y, i) → error [i < 0 ∨ i ≥ size(y) ∨
(select(y, i) 6= 0 ∧ i ≥ size(x))]

w(x, y, i) → error [i < 0 ∨ i ≥ size(x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Side Effects

Statically Allocated Arrays
void strcpy(char goal[], char original[]) {

int i = 0;

for (; original[i]; i++) goal[i] = original[i];

goal[i] = 0;

}

strcpy(x, y) → v(x, y, 0)
v(x, y, i) → w(x, y, i) [0 ≤ i < size(y) ∧ select(y, i) = 0]
v(x, y, i) → v(store(x, i, select(y, i)), y, i+ 1) [0 ≤ i <

size(x) ∧ i < size(y) ∧ select(y, i) 6= 0]
w(x, y, i) → return(store(x, i, 0)) [0 ≤ i < size(x)]

v(x, y, i) → error [i < 0 ∨ i ≥ size(y) ∨
(select(y, i) 6= 0 ∧ i ≥ size(x))]

w(x, y, i) → error [i < 0 ∨ i ≥ size(x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Side Effects

Statically Allocated Arrays
void strcpy(char goal[], char original[]) {

int i = 0;

for (; original[i]; i++) goal[i] = original[i];

goal[i] = 0;

}

strcpy(x, y) → v(x, y, 0)
v(x, y, i) → w(x, y, i) [0 ≤ i < size(y) ∧ select(y, i) = 0]
v(x, y, i) → v(store(x, i, select(y, i)), y, i+ 1) [0 ≤ i <

size(x) ∧ i < size(y) ∧ select(y, i) 6= 0]
w(x, y, i) → return(store(x, i, 0)) [0 ≤ i < size(x)]
v(x, y, i) → error [i < 0 ∨ i ≥ size(y) ∨

(select(y, i) 6= 0 ∧ i ≥ size(x))]
w(x, y, i) → error [i < 0 ∨ i ≥ size(x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Dynamic Pointers

Dynamically Allocated Arrays

• model memory as a sequence of integer sequences

• a dynamic array is a pair (index, offset)

• int *a = new int[10];

⇒ u1(mem)→
u2(add(mem, x), pair(size(mem), 0)) [size(x) = 10]

• int k = a[3];

⇒ u2(mem, pair(x, y))→
u3(mem, pair(x, y), select(select(mem, x), y + 3))
[0 ≤ y + 3 < size(select(mem, x))]

(Note: select(mem, a) returns () if a is out of bound.)

• int *b = a + 1;

⇒ u3(mem, pair(x, y), k)→
u4(mem, pair(x, y), k, pair(x, y + 1))
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Goal

What is Equivalence for LCTRSs?

Teacher’s code:

sum1(x) → return(0) [x ≤ 0]
sum1(x) → helper(x, sum1(x− 1)) [x > 0]

helper(x, return(y)) → helper(x+ y)

Student’s code:

sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → return(z) [¬(i ≤ x)]

Query: sum1(x)↔∗ sum2(x) for all x?
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Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

=⇒ for example: E = {sum1(x) ≈ sum2(x) [true]}
• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.
Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi →∗← tiγi: confluence of →R
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Approach

Rewriting Induction

(

E

, ∅)

(E1,H1)

(E2,H2)

(E3,H3)

(E4,H4)

(∅,H4)
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Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `
Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R
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Induction Rules

Simplification: definition

(E ] {s ' t [ϕ]},H)
(E ∪ {s′ ≈ t [ψ]},H)

if s ≈ t [ϕ] →R∪H s′ ≈ t [ψ]

Idea: Use the program or an induction hypothesis to simplify the
query.
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R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E ] {u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1]

},H)
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Induction Rules

Expansion: definition

(E ] {s ' t [ϕ]},H)
(E ∪ Expd(s, t, ϕ, p),H ∪ {s→ t [ϕ]})

if for every γ compatible with ϕ, s|p reduces and
R∪H ∪ {s→ t [ϕ]} is terminating

Expd(C[l′]p, t, ϕ, p) contains equations C[rγ]p ≈ tγ [ϕγ ∧ ψγ] for
all l→ r [ψ] in R where l and l′ unify with most general unifier γ

Idea: Exhaustive case analysis, generate induction hypothesis.
(Closely related: narrowing.)
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Induction Rules

Deletion: definition

(E ] {s ' t [ϕ]},H)
(E ,H)

if s ≡ t or ϕ is unsatisfiable

Idea: Delete trivial inductive theorems.
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Induction Rules

EQ-Deletion: definition

(E ] {C[s1, . . . , sn] ≈ C[t1, . . . , tn] [ϕ]},H)
(E ∪ {C[~s] ≈ C[~t] [ϕ ∧ ¬

∧n
i=1(si = ti)]},H)

if s1, . . . , sn, t1, . . . , tn all logical terms

Idea: If all arguments to the same context become equal, we’re done.
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Induction Rules

Postulate: definition

(E ,H)
(E ] {s ≈ t [ϕ]},H)
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Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

( {sum1(x) ≈ sum2(x) [>]}, ∅ )

u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
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Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
sum1(x) ≈ sum2(x) [>]
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Generalisation Method

Use Different Notation!

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
sum1(x) ≈ sum2(x) [>]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
sum1(x) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x > 0]
c0 ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x ≤ 0 ∧ c0 = 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x > 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1 + 1, c2 + c1) [c1 = 0 ∧ c2 = 0 ∧ x > 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x

′) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [

c1 = 0 ∧ c2 = 0 ∧

x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 49 / 53



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)
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Contributions

Implementation and Experiments

• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/

• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.4
fib 4 6 3 6.6

sumfrom 3 1 2 1.9
strlen 1 0 5 7.2
strcpy 3 0 3 11.5
arrsum 1 0 0 4.2
fact 1 0 0 2.4

total 22 7 17 5.9

Experiments with student code
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Contributions

Implementation and Experiments

• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/

• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.2
fib 10 1 2 5.9

sumfrom 3 0 3 2.3
strlen 2 0 4 6.0
strcpy 5 0 1 14.1
arrsum 1 0 0 4.2
fact 1 0 0 2.5

total 31 1 14 5.9

Experiments with student code and adapted teacher code
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Contributions

Conclusion

• Logically Constrained Term Rewrite Systems
for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs

• Conference paper at APLAS 2014

• Full version: http://arxiv.org/abs/1409.0166

Questions?
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